Международная сертификация менеджмента качества ISO 9001

Международная Кафедра-сеть ЮНЕСКО/МЦОС «Техническое и профессиональное образование и подготовка кадров (TVET)

Международный Центр Обучающих Систем

Вышел том 15, № 1 (2022) журнала «Надежность и безопасность энергетики»

12 мая, 2022

В НОМЕРЕ:

  • Прогрев паропроводов при пусках паровых турбин
  • Анализ работы электрических сетей Иркутской электросетевой компании
  • Режим регулирования частоты и мощности гидроагрегатов ГЭС
  • Модернизация систем маслоснабжения паротурбинных агрегатов
  • Транспарентность компаний ТЭК

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Вышел том 14, № 4 (2021) журнала «Надежность и безопасность энергетики»

4 февраля, 2022

В НОМЕРЕ:

  • Ремонтная программа генерирующего оборудования
  • Бесперспективность тригенерационных установок на объектах российской энергетики
  • Оптимальный срок замены трубопроводов
  • Международные отношения городов в побратимском формате

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Вышел том 14, № 3 (2021) журнала «Надежность и безопасность энергетики»

20 декабря, 2021

В НОМЕРЕ:

  • В память о С.И. Магиде.
  • Обучающие системы и тренажеры в энергетике.
  • Опыт эксплуатации электрических сетей Иркутской области.
  • Противодействие развитию катастроф на природно-технических объектах.
  • Ребрендинг энергетических компаний.
  • Исследование характеристик ленточных конвейеров для угольных электростанций.
  • Информация о судебном решении.

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Вышел том 13, № 4 (2020) журнала «Надежность и безопасность энергетики»

20 декабря, 2021
  • Цифровые технологии управления антропогенными рисками.
  • Ветровые и солнечные электростанции и надежность ОЭС.
  • Эффективность энергосистем и компенсация реактивной мощности.
  • Экологическая ситуация и безопасность мегаполиса.
  • Загрузка силовых трансформаторов в системах сельского энергосбережения.
  • Обучение действующего резерва в АО «Мособлэнерго».
  • Оценка работы гелио-геотермальной электростанции в Эфиопии.

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Вышел том 14, № 2 (2021) журнала «Надежность и безопасность энергетики»

17 декабря, 2021

В НОМЕРЕ:

  • Сжиженный газ как резервное топливо ТЭЦ.
  • Повреждаемость и техническое состояние воздушных линий электропередачи.
  • Совершенствование поршневого двигателя с турбонаддувом.
  • Комбинированная система воздушного и водяного отопления зданий.
  • Разработка оборудования для атомного ледокола.

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Вышел том 14, № 1 (2021) журнала «Надежность и безопасность энергетики»

17 декабря, 2021

В НОМЕРЕ:

·  Декомпозиционная модель для исследования и оптимизации надежности ЕЭС России.

·  Методические основы анализа электроэнергетических систем.

·  Вероятность хрупкого разрушения оборудования АЭС.

·  Надежность объектов распределенной энергетики.

·  Ремонтная программа оборудования ТЭС по техническому состоянию.

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Вышел том 13 № 3 (2020) журнала «Надежность и безопасность энергетики»

17 декабря, 2021

В НОМЕРЕ:

·  Нормирование цифровых технологий тренажерных систем.

·  Моделирование сжигания топлива для понижения токсичности продуктов горения.

·  Коммуникационная технология управления кризисом в период «ледяных дождей».

·  Организационные риски обеспечения надежности турбоагрегатов ТЭС и АЭС.

·  Классификация интегральных показателей оперативной эффективности работы объектов

электроэнергетических систем.

Предлагаем вам оформить подписку  на бумажную или электронную версию журнала.

Сразу после выхода свежего номера

  • подписчикам бумажной версии журнал отправляется по почте на указанный адрес доставки;
  • подписчикам электронной версии открывается доступ к выпуску на сайте журнала.

Организациям рекомендуется оформить подписку для юридических лиц.

Подписчикам (на календарный год) предоставляется возможность разместить один рекламный модуль размером 1/4 страницы бесплатно.

Редакция журнала «Надежность и безопасность энергетики» разместит на страницах журнала и на сайте рекламную информацию о новых изделиях, приборах и материалах, услугах и разработках в области энергетических и электротехнических технологий, соответствующих тематике журнала.

Перейти на сайт журнала >>>

Компьютерный тренажерно-аналитический комплекс блочной установки с поперечными связями на основе турбины Т-118/125-130-8 

25 марта, 2021
Заказать бесплатную демонстрацию тренажера >>>



                                                                     ТЕХНИЧЕСКОЕ ОПИСАНИЕ
  
Описание объекта
.
Полное наименование системы: «Полномасштабный компьютерный тренажерно-аналитический комплекс блочной установки с поперечными связями на основе турбины Т-118/125-130-8» (паровая теплофикационная турбина Т-118/125-130-8 с генератором ТФП-110-2УЗ, три котла типа БКЗ-210-140-9, работающих на угольной пыли и попутном газе).  

Условное обозначение: «Тренажер блока Т-118».
Год выпуска: 2020 год.

Полномасштабный компьютерный тренажерно-аналитический комплекс блочной установки Т-118 МВт для подготовки персонала котлотурбинного цеха построен на основе двух программно-технических комплексов: ПТК «ТЕКОН», разработанного ГК «ТЕКОН» и ПТК АО «ТЭСТ». Специализированный ПТК «ТЕКОН» установлен на котлах для автоматизации управления котлоагрегатами и имитируется в тренажере в полном объеме. ПТК АО «ТЭСТ» — программный комплекс, разработанный для отображения и управления системами турбины, генератора и общестанционного оборудования в тренажере. Тренажер моделирует работу основного и вспомогательного оборудования блока 118 МВт, алгоритмов управления и защиты, имитирует управление с операторских станций, является средством обучения, предэкзаменационной подготовки и экзаменационного тестирования оперативного персонала электростанции.

Тренажер представляет из себя копию рабочего места оператора энергоблока, средство подготовки персонала, реализующее логико-динамическую и (или) функциональную модель оборудования (блок, 3 котла, турбина, генератор, и т.д.) и осуществляющее контроль качества подготовки персонала. Общий графический дизайн тренажера разработан на основе технологических мнемосхем, имеющихся на блочном щите и оперативных схем турбинного и котельного цехов, дизайн котельных схем выполнен аналогично схемам ПТК «ТЕКОН», дополненных технологической арматурой, необходимой для управления в подготовительных, пусковых и других режимах работы оборудования данного блока.

Для повышения уровня профессионализма и дальнейшей аттестации данный тренажер предполагает обучение, тренировку и тестирование персонала по следующим специальностям:

— начальник смены станции;
— начальник смены котельного цеха;
— начальник смены турбинного цеха;
— старший машинист;
— машинист блока;
— машинист котла;
— машинист турбины;
— машинист-обходчик основного оборудования;
— машинист-обходчик вспомогательного оборудования.

В состав объекта-прототипа тренажера блока 118 МВт входят:

— теплофикационная паровая турбина Т-118/125-130-8 с конденсационной установкой и двумя регулируемыми отопительными отборами;
— три паровых барабанных котла БКЗ-210-140-9, работающих на газе и угле;
— вспомогательное оборудование;
— общестанционное оборудование;
— генератор ТФП-110-2УЗ.

Краткое описание объекта-прототипа.

Блочная установка 118 МВт состоит из паровой теплофикационной турбины типа Т-118/125-130-8, изготовленной на УТМЗ, с конденсационной установкой и двумя регулируемыми отопительными отборами, предназначенной для непосредственного привода турбогенератора типа  ТФП-110-2УЗ и отпуска тепла для нужд отопления; трех паровых барабанных котлов БКЗ-210-140-9 (топливо – уголь, природный газ), комплекса вспомогательного блочного и общестанционного оборудования (насосов, подогревателей, охладителей, паропроводов и пр.), работающего в едином термодинамически связанном технологическом цикле.

Общестанционное оборудование блока состоит:

— главный коллектор пара ВД с давлением 130 кгс/см2;
— растопочный паровой коллектор, коллекторы НД;
— коллекторы питательной воды, конденсата и др.;
— три деаэратора питательной воды ДП-225 ст.№13,14,15;
— три питательных электронасоса ЭПН-13 марки ПЭ-380-200-2 и ЭПН-14,15 марки ПЭ-380-185-2;
— растопочное редукционно-охладительное устройство РОУ-140/10-16 кгс/см2;
— редукционные охладительные устройства РОУ-1, РОУ-2 давлением 140/110 кгс/см2;
— бойлерная установка, состоящая из трех ПБ марки ПСВ-500-14-23.

Состав тренажера:

  1. Операторский интерфейс системы управления, разработанный АО «ТЭСТ» (12 мнемосхем, разработанных по оперативным схемам котло-турбинного цеха):
— Главный паропровод.
— Турбина Т-118/125-130-8.          
— Маслосистема смазки турбины.
— Уплотнения турбины.
— Тепловое состояние и механические величины.
— Теплофикационная установка.
— Циркуляционная система.
— Бойлерная установка.
— Охлаждение генератора.
— Схема создания вакуума.
— Схема обвязки ПВД.
— Питательно-деаэрационная установка.
— Защиты блока.
— Защиты турбины.
— Защиты вспомогательного оборудования.
  1. Интерфейс реальной АСУ ТП котлоагрегата, разработанный ГК «ТЕКОН», управляющий всеми системами котла:
— Общая схема котла БКЗ-210-140-9.
— Газопроводы и горелки.
— Горелка 1.
— Горелка 2.
— Горелка 3.
— Горелка 4.
— Горелка 5.
— Горелка 6.
— Газовый тракт.
— Воздушный тракт котла.
— Питательный тракт котла.
— Пароперегреватель.
— Температура металла ПП.
— Пылесистема МВ-11А, 11Б.
— ШБМ.
— Маслосистема.
— Паромазутопроводы.
— Орошение ЗУУ.
— Температура подшипников.
— Вся пылесистема.
— Газовоздушный тракт.
— Технологические защиты останова котла.
— Локальные технологические защиты котла (ч.1).
— Локальные технологические защиты котла (ч.2).
— ТЗСН 50%.
— ТЗ Горелка №1.
— ТЗ Горелка №2.
— ТЗ Горелка №3.
— ТЗ Горелка №4.
— ТЗ Горелка №5.
— ТЗ Горелка №6.
— Блокировки котла.
— ТБ Горелка №1.
— ТБ Горелка №2.
— ТБ Горелка №3.
— ТБ Горелка №4.
— ТБ Горелка №5.
— ТБ Горелка №6.
— Действия защит.
— Защиты блока.
— Защиты турбины.
— Защиты вспомогательного оборудования.

3. Сигнализация блока.
4. Математическая интегральная модель турбины типа Т-118/125-130-8
5. Математическая интегральная модель котла БКЗ-210-140-9.
6. Математическая интегральная модель вспомогательного оборудования.
7. Математическая интегральная модель общестанционного оборудования, технологически связанного с блоком Т-118.
8. Модель защит, блокировок, сигнализаций, автоматики, пошаговых программ.
9. Развитая конфигурация сети (подключение любого количества компьютеров).
10. Пульт инструктора.
Контролирующая программа, позволяющая фиксировать неправильные действия оператора энергообъекта (несоответствие логике и смыслу правил технической эксплуатации).
11. Комплект нештатных ситуаций (задание с помощью специальной таблицы вводных).
12. Комплект автоматизированных сценариев тренировок с оценкой выполнения задания.
Возможность построения любых диспетчерских графиков и работа по этим графикам.
13. Сохранение режимов и запуск тренажера из любого сохраненного состояния.
14. Протоколирование: действий оператора, ошибок, сигнализаций, защит, блокировок.
15. Контроль ТЭП, графопостроение для всех параметров, состояния механизмов и арматуры.
16. Система поддержки оператора.
17. Ускорение и замедление процессов, замораживание ситуаций, возврат ситуаций.
18. Эксплуатационная документация, в том числе описание тренажера, справочные материалы, задания, пошаговые инструкции и т.д.
19. Оптимизация программного обеспечения (с применением современных информационных технологий и современных методов моделирования) с возможностью установки тренажера как на одном компьютере, а так и на любом количестве компьютеров.

Математическое описание тренажера.

Математическая модель теплогидравлической части объекта состоит из дифференциальных уравнений, основанных на рассмотрении физической природы процессов, то есть стандартных балансовых уравнений, а количественные зависимости и направленность процессов определяются законами термодинамики, гидродинамики, аэродинамики и т.д. Зависимости между параметрами связей однозначно и единообразно описываются уравнениями энергетического, расходного и гидравлического балансов в элементах оборудования, а также уравнениями изменения энтальпии каждого из видов теплоносителя.

Состав моделируемых режимов.

В тренажере моделируются следующие режимы:

  1. Пуск блока из любого теплового состояния.
  2. Останов блока.
  3. Работа блока в любом диапазоне нагрузок.
  4. Перевод котла с газа на сжигание пыли.
  5. Перевод котла с пыли на сжигание газа.
  6. Включение и отключение теплофикационной установки.
  7. Включение и отключение бойлерной установки.
  8. Работа блока с различным составом оборудования (3 котла + паровая турбина; 2 котла + паровая турбина, 1 котел + паровая турбина и т.д.)
  9. Включение в сеть генератора.
  10. Работа блока с автоматическим и(или) ручным регулированием.
  11. Работа блока в нештатных режимах.

Состав базовых сценариев тренировок.

Каждое задание составлено на основе эксплуатационных инструкций, действующих на электростанции, и представляет собой одну из стандартных технологических операций. Тренажер снабжен стандартным набором заданий для тренировок, после выполнения которых автоматически выставляется оценка.

— Включение в работу маслосистемы турбины.
— Включение в работу системы циркуляционного водоснабжения.
— Включение в работу конденсатного тракта.
— Включение в работу питательно-деаэрационной установки.
— Подготовка котла к пуску.
— Растопка котла из холодного состояния.
— Включение котла в паровую магистраль.
— Останов котла.
— Пуск вакуумной системы.
— Прогрев трубопроводов острого пара до ГПЗ.
— Пуск турбины.
— Нагружение блока. Включение в работу ПВД.
— Включение теплофикационной установки.
— Отключение теплофикационной установки.
— Включение в работу пылесистемы.
— Перевод котла на сжигание угольной пыли.
— Останов системы пылеприготовления.
— Останов турбины.
— Пуск блока из горячего состояния.

Состав нештатных ситуаций.

В тренажер включен стандартный набор нештатных ситуаций, служащих для подготовки оперативного персонала к парирующим действиям в режиме аварии. С помощью таблиц вводных задаются отказы в работе технологического оборудования, арматуры, систем автоматики, электрооборудования.

Имеется функция задержки по времени на ввод любой из ситуаций в действие. Задержка указывается в правом нижнем углу поля каждой аварийной вводной.

  1. Отказы в работе:
— Отказы в работе арматуры;
— Отказы в работе механизмов;
— Регулирующие клапаны;
— Отказ в работе любой защиты;
— Несрабатывание АВР.
  1. Нештатные ситуации в работе турбинного оборудования и технологических процессах.
— Заедание стопорного клапана.
— Самопроизвольная посадка стопорного клапана.
— Заедание регулирующих клапанов турбины.
— Засорение фильтров ЦН-1,ЦН-2.
— Разрыв трубок ПВД.
— Разрыв трубок ПНД.
— Разрыв трубок ПСГ-1,2.
— Разрыв трубок ПБ-1,2,3.
— Уменьшение протока масла через подшипники турбины.
— Отключение секций питания собственных нужд.
  1. Нештатные ситуации в работе котельного оборудования и технологических процессах.
3.1. Снижение давления газа перед котлом.
3.2. Ухудшение качества угля.
3.3. Самопроизвольное открытие/закрытие предохранительных клапанов.
3.4. Разрыв труб:
— водяного экономайзера А,Б;
— экранных труб;
— пароперегревателя 1 ступени А,Б;
— ширмового пароперегревателя 1 ступени А,Б;
— ширмового пароперегревателя 2 ступени А,Б;
— пароперегревателя 3 ступени А,Б;
— пароперегревателя 4 ступени А,Б;
— трубопроводов питательной воды;
— паропроводов в пределах котла;
3.5. Повреждение топочной футеровки и сводов.
3.6. Сброс нагрузки:
— с потерей собственных нужд;
— без потери собственных нужд;
3.7. Нарушение водно-химического режима КА.
3.8. Потеря напряжения на устройствах дистанционного и автоматического управления на всех КИП и А.

Компьютерный тренажерно-аналитический комплекс блока двух ПГУ-39 МВт с поперечными связями

24 марта, 2021
Заказать бесплатную демонстрацию тренажера >>>





                                                                   ТЕХНИЧЕСКОЕ ОПИСАНИЕ



Описание объекта.

Полное наименование системы: «Компьютерный тренажерно-аналитический комплекс 2х ПГУ-39 с поперечными связями для оперативного персонала котлотурбинного цеха (2 газовые турбины GT-10C, 2 паровые турбины Т-10/11-5,2, 2 котла-утилизатора П-103 (Пр-39/8-5,5/0,62-487/212, ), система управления на базе программно-технического комплекса ПТК Simatic PCS7 Siemens, ПТК Advant Power Control ABB).

Условное обозначение: «Тренажер 2х ПГУ-39».
Год выпуска: 2020 год.

Главной особенностью данного тренажера является управление двумя энергоблоками ПГУ-39 при их совмещенной работе через поперечные связи.

Тренажер-симулятор двух парогазовых установок 39 МВт, объединенных поперечными связями, построен на основе программно-технических комплексов ПТК Simatic PCS7 Siemens и ПТК Advant Power Control ABB и моделирует работу основного и вспомогательного оборудования 2хПГУ-39 МВт, алгоритмов управления и защиты, имитирует управление с операторских станций, является средством обучения, предэкзаменационной подготовки и экзаменационного тестирования оперативного персонала электростанции.

Для повышения уровня профессионализма и дальнейшей аттестации данный тренажер предполагает обучение, тренировку и тестирование персонала по следующим специальностям:

— заместитель главного инженера по эксплуатации;

— старший начальник смены электростанции;

— начальник смены электростанции;

— начальник смены;

— старший машинист;

— машинист энергоблока;

— машинист-обходчик;

— машинист – обходчик по вспомогательному оборудованию;

— дежурный электромонтер.

В состав объекта-прототипа тренажера 2хПГУ-39 входят:

-две газотурбинные установки GT10C (SGT700) (производства фирмы Demag Delaval Industrial Turbomachinery (Siemens) с генераторами переменного тока AMS1120LK фирмы АВВ; две паровые турбины Т-10/11-5,2/0,2 «КТЗ» с генераторами типа ТАП-12-2КУЗ ОАО «Силовые машины»; два котла-утилизатора П-103 (Пр-39/8-5,5/0,62-487/212) «ЗиОМАР»; вспомогательное оборудование энергоблоков ПГУ; две теплофикационные установки.

-удалённые объекты, управление которыми производится с БЩУ, в том числе: циркнасосная станция (ЦНС), береговая насосная станция (БНС), воздушная конденсационная установка (ВКУ), блочный пункт подготовки газа (БППГ);

-автоматизированная система контроля и управления блоком Simatic PCS7 Siemens, ПТК Advant Power Control ABB – система контроля и управления газовой турбиной.

Краткое описание объекта-прототипа.

 Парогазовые установки (два блока ПГУ-39) – состоят каждая из одной газотурбинной установки типа GT10C (SGT-700), одного котла-утилизатора типа П-103 (Пр-39/8-5,5/0,62-487/212), одной теплофикационной паровой турбины Т-10/11-5,2 (КТЗ), комплекса вспомогательного оборудования (насосов, подогревателей, охладителей и пр.), работающего в едином термодинамически связанном технологическом цикле. Объединение блоков происходит через поперечные связи между контурами пара НД и ВД, а также через контуры основного конденсата и СН обоих ПГУ.

В зависимости от требований к выработке мощности и эффективности работы электростанции при подключении поперечной связи состав работающего основного оборудования может значительно изменяться: 

— работа двух ПГУ при выведенной из работы одной ПТУ;

— работа ПГУ при двух включенных ПТУ-1,2 и выведенных из работы КУ-2, ГТУ-2;

— использование ПТУ одного блока в качестве замены ПТУ другого и т.д.

Газотурбинная установка GT-10C (производства фирмы Demag Delaval Industrial Turbomachinery, принадлежащей фирме Siemens), выполнена в виде двухвального турбоагрегата (газогенератор и силовая турбина), работающего по простому термодинамическому циклу, при начальной температуре газа 1140 оС перед первой ступенью, температуре газов на выходе из турбины 518 оС.

Справочные показатели для газотурбинной установки GT-10C, работающей на природном газе: электрическая мощность при расчетных наружных и рабочих условиях: температуре наружного воздуха 15 оС, барометрическом давлении 1,013 бар (абс.), относительной влажности наружного воздуха 60%, потерях давления на входе равных нулю, а на выходе из ГТУ равных 25 мбар, частоте 50 Гц, коэффициенте мощности 0,8, работе на режиме базовой электрической нагрузки (100%) на природном газе с низшей теплотой сгорания 47914 кДж/кг, составляет 28,3 МВт; при этом коэффициент полезного действия 35,5 % .

На входе в ГТУ установлено КВОУ, предназначенное для очистки поступающего воздуха от твердых частиц, пыли и минеральных солей. Фильтры КВОУ выполнены с импульсной очисткой.

Для повышения давления природного газа поступающего на вход в ГТУ используются газодожимные компрессоры.

Выхлопные газы ГТ направляются в котёл-утилизатор.

Котел-утилизатор типа Пр-39/8-5,5/0,62-487/212 (П-103) разработан ОАО «ИК ЗИОМАР» и изготовлен ОАО «ЗИО-Подольск» для ПГУ мощностью 39 МВт.

Котел-утилизатор имеет башенную компоновку поверхностей нагрева, два парогенерирующих контура с паровыми барабанами и с многократной принудительной циркуляцией в испарительных контурах высокого и низкого давлений. КУ предназначен для работы в парогазовых установках с использованием в нем в качестве греющей среды продуктов сгорания природного газа (основного топлива) или дизельного топлива (аварийного), поступающих из газовой турбины типа GT10C.

Пар из КУ подается в паровую турбину типа Т-10/11-5,2/0,2.

КУ оснащен автоматизированной системой управления и контроля, которая является подсистемой АСУ блочного уровня.

Паровая стационарная теплофикационная турбина Т-10/11-5,2/0,2 с регулируемым отопительным отбором пара предназначена для непосредственного привода генератора и снабжения тепловых потребителей паром из регулируемого отопительного отбора. Паровая теплофикационная турбина Т-10/11-5,2/0,2, на месте установки комплектуется синхронным электрическим генератором типа ТАП-12-2КУЗ, производства ОАО «Электросила» г. Санкт-Петербург.

Система теплофикации каждого блока включает подогреватель сетевой воды  и охладитель конденсата греющего пара ПСВ, соединенных последовательно по сетевой воде, из которых конденсат откачивается насосами в линию основного конденсата.

Состав тренажера:

  1. Операторский интерфейс реальной системы управления Simatic PCS7 Siemens блока, системы управления газовой турбиной Advant Power Control ABB (99 схем), операторской станции ПТК ССС.
  2. Математическая интегральная модель газовой турбины GT-10C.
  3. Математическая интегральная модель паровой турбины Т-10/11-5,2.
  4. Математическая интегральная модель котла-утилизатора П-103.
  5. Математические интегральные модели генераторов AMS1120LK, ТАП-12-2КУЗ.
  6. Модель реальной АСУ ТП блока (защит, блокировок, сигнализаций, автоматики, пошаговых программ).
  7. Развитая конфигурация сети (подключение любого количества компьютеров).
  8. Пульт инструктора.
  9. Контролирующая программа, позволяющая фиксировать неправильные действия оператора энергообъекта (несоответствие логике и смыслу правил технической эксплуатации).
  10. Комплект нештатных ситуаций (задание с помощью специальной таблицы вводных).
  11. Комплект автоматизированных сценариев тренировок с оценкой выполнения задания.
  12. Возможность построения любых диспетчерских графиков и работа по этим графикам.
  13. Сохранение режимов и запуск тренажера из любого сохраненного состояния.
  14. Протоколирование: действий оператора, ошибок, сигнализаций, защит, блокировок.
  15. Контроль ТЭП, графопостроение для всех параметров, состояния механизмов и арматуры.
  16. Система поддержки оператора.
  17. Ускорение и замедление процессов, замораживание ситуаций, возврат ситуаций.
  18. Эксплуатационная документация, в том числе описание тренажера, справочные материалы, задания, пошаговые инструкции и т.д.
  19. Оптимизация программного обеспечения (с применением современных информационных технологий и современных методов моделирования) с возможностью установки тренажера как на одном компьютере, а так и на любом количестве компьютеров.

Математическое описание тренажера.

Математическая модель теплогидравлической части объекта состоит из дифференциальных уравнений, основанных на рассмотрении физической природы процессов, то есть стандартных балансовых уравнений, а количественные зависимости и направленность процессов определяются законами термодинамики, гидродинамики, аэродинамики и т.д. Зависимости между параметрами связей однозначно и единообразно описываются уравнениями энергетического, расходного и гидравлического балансов в элементах оборудования, а также уравнениями изменения энтальпии каждого из видов теплоносителя.

В состав тренажёра входят математические модели генератора, системы возбуждения, электрической цепи, средств РЗА, трансформаторов, коммутационных аппаратов, электродвигателей и упрощённая модель энергосистемы при работе на длинную линию;

Модель генератора реализована на основе системы дифференциальных уравнений Парка-Горева и описывает работу генератора в синхронном, асинхронном и двигательном режимах с непрерывным переходом из одного режима в другой.

Модель электрической цепи основана на системе дифференциальных уравнений, выражающих законы Кирхгофа, и описывает динамику напряжения, токов и частоты во всех режимах, включая аварийные.

В состав математического описания тренажера входят следующие подсистемы:

  1. Газовая турбина блоков 1, 2;
  2. Котел-утилизатор блоков 1, 2;
  3. Паровая турбина блоков 1, 2;
  4. Вспомогательное оборудование блоков 1, 2;
  5. Общестанционное оборудование:
— Техводоснабжение;
— Пункт подготовки газа;
— Дизельное топливо;
— Теплофикация;
— Воздушно-конденсационная установка, аппарат воздушного охлаждения(ВКУ-АВО);
— Поперечные связи блоков;

6.Главная электрическая схема:

— КРУ- 110 кВ;
— КРУ- 10 кВ;
— РУСН-0,4 кВ.

7.Защиты блока (2 шт.)
8.Сигнализация;
9.Выключатели 1-я очередь
10.Операторская станция ПТК ССС:
11. Паровая турбина №1,2.

Состав моделируемых режимов.

В тренажере моделируются следующие режимы:

  1. Пуск блока №1,2 из любого теплового состояния.
  2. Останов блока №1,2.
  3. Работа блока №1,2 в любом диапазоне нагрузок.
  4. Включение и отключение теплофикационной установки блоков №1,2.
  5. Работа блоков №1,2 с различным составом оборудования.
  6. Синхронизация и включение в сеть генераторов бл. №1,2.
  7. Работа блока №1,2 с автоматическим и(или) ручным регулированием.
  8. Реализованы пошаговые программы для оборудования блоков №1,2
     9. Пошаговые программы газовых турбин №1,2;
         Работа блока в нештатных режимах.

    Состав базовых сценариев тренировок.

     Каждое задание составлено на основе эксплуатационных инструкций, действующих на электростанции, и представляет собой одну из стандартных технологических операций. Тренажер снабжен стандартным набором заданий для тренировок, после выполнения которых автоматически выставляется оценка.

    1. Подготовка и включение в работу систем циркуляционного и технического водоснабжения.
    2. Подготовка и включение в работу систем смазки паровой и газовой турбин блока №1 и блока №2.
    3. Подготовка и включение в работу систем регулирования паровой и газовой турбин блока №1 и блока №2.
    4. Подготовка и включение в работу конденсационной установки блока №1 и блока №2.
    5. Заполнение конденсатного тракта и котла водой блока №1 и блока №2.
    6. Подготовка и включение в работу системы подачи природного газа (продувка газопроводов, включение ГДК, подача топливного, пускового газа) блока №1 и блока №2.
    7. Пуск ГТУ-1.
    8. Синхронизация генератора газовой турбины №1.
    9. Набор вакуума в конденсаторе паровой турбины блока №1.
    10. Прогрев паропроводов, стопорных клапанов паровой турбины №1.
    11. Подача пара в турбину №1, прогрев турбины, повышение частоты вращения до холостого хода.
    12. Синхронизация, включение генератора паровой турбины №1 в сеть, прогрев паровой турбины, набор начальной нагрузки.
    13. Нагружение паровой турбины №1.
    14. Подключение контура низкого давления №1.
    15. Выход на номинальные параметры ПТ №1.
    16. Пуск ГТУ-2.
    17. Синхронизация генератора газовой турбины №2.
    18. Прогрев паропроводов, стопорных клапанов паровой турбины №2, набор вакуума в конденсаторе паровой турбины блока №2.
    19. Подача пара в турбину №2, прогрев турбины, повышение частоты вращения до холостого хода.
    20. Синхронизация, включение генератора паровой турбины №2 в сеть, прогрев паровой турбины, набор начальной нагрузки.
    21. Нагружение паровой турбины №2.
    22. Подключение контура низкого давления №2.
    23. Выход на номинальные параметры ПТ №2.
    24. Пуск блока из неостывшего состояния.
    25. Пуск блока из горячего состояния.
    26. Останов блока.
    27. Включение в работу теплофикационной установки блока №1.
    28. Включение в работу теплофикационной установки блока №2.
    29. Отключение теплофикационной установки блока №1.
    30. Отключение теплофикационной установки блока №2.
    31. Объединение энергоблока №1 и энергоблока №2 через поперечные связи.
    32. Отключение ГТУ-1 в режиме работы энергоблока №1 и энергоблока №2 с поперечными связями.
    33. Подключение ГТУ-1 в режиме работы энергоблока №1 и энергоблока №2 с поперечными связями.
    34. Отключение ГТУ-2 в режиме работы энергоблока №1 и энергоблока №2 с поперечными связями.
    35. Подключение ГТУ-2 в режиме работы энергоблока №1 и энергоблока №2 с поперечными связями.
    36. Гидравлические испытания (пробным давлением) контуров высокого и низкого давлений КУ-1 (совместно с паропроводами ВД и НД).
    37. Гидравлические испытания (пробным давлением) контуров высокого и низкого давлений КУ-2 (совместно с паропроводами ВД и НД).
    38. Испытания бойков регулятора безопасности ПТУ-1 повышением частоты вращения ротора.
    39. Испытания бойков регулятора безопасности ПТУ-2 повышением частоты вращения ротора.
    40. Проверка плотности стопорного клапана и регулирующих клапанов ВД ПТУ-1.
    41. Проверка плотности стопорного клапана и регулирующих клапанов ВД ПТУ-2.
    42. Пуск блока №1 из холодного состояния.
    43. Пуск блока №2 из холодного состояния.

    Состав нештатных ситуаций.

    В тренажер включен стандартный набор нештатных ситуаций, служащих для подготовки оперативного персонала к парирующим действиям в таких ситуациях. С помощью таблиц вводных задаются отказы в работе технологического оборудования, арматуры, систем автоматики, электрооборудования.

    Имеется функция задержки по времени на ввод любой из ситуаций в действие. Задержка указывается в правом нижнем углу поля каждой аварийной вводной.

    1.Отказы в работе:
    1.1. Отказы в работе арматуры;
    1.2. Отказы в работе механизмов;
    1.3. Регулирующие клапаны;
    1.4. Отказ в работе любой защиты.
    2.Нештатные ситуации в работе тепломеханического оборудования:
    2.1. Разрыв труб поверхностей нагрева КУ и трубопроводов в пределах котла.
    2.2. Разрывы трубных систем общестанционного назначения;
    2.3. Механические повреждения турбогенератора;
    2.4. Разрывы основных трубопроводов турбогенератора:
    — Разрыв газопровода;
    — Разрыв маслопровода смазки.
    2.5. Подшипники турбины и генератора;
    2.6. Нарушение работы электрических собственных нужд;
    — Короткое замыкание на шинах 110 кВ;
    — Короткое замыкание на шинах 10 кВ;
    — Короткое замыкание на шинах 0,4 кВ;
    — Короткое замыкание в трансформаторах;
    — Короткое замыкание в генераторах.
    2.7. Ухудшение качества питательной воды.
    2.8. Система обнаружения пожара и загазованности;
    2.9. Засорение фильтров;
    2.10. Самопроизвольное срабатывание;
    2.11. Неисправности в механической части системы регулирования ПТ;
    2.12. Неисправности в механической части системы регулирования КУ;
    2.13. Изменение частоты в системе;
    2.14. Пропуск среды в обратном направлении (блоки1,2).

    Заказать бесплатную демонстрацию тренажера >>>

    Тренажерно-аналитический комплекс по оперативным переключениям   Иркутской ГЭС

    24 марта, 2021
    Заказать бесплатную демонстрацию тренажера >>>


                                                                    ТЕХНИЧЕСКОЕ ОПИСАНИЕ


    Описание объекта.

    Полное наименование системы: «
    Полномасштабный компьютерный тренажерно-аналитический комплекс по оперативным переключениям Иркутской ГЭС.»
    Условное обозначение: «Тренажер Иркутской ГЭС».

    Год выпуска: 2020

    Полномасштабный компьютерный тренажерно-аналитический комплекс по оперативным переключениям Иркутской ГЭС разработан и внедрен для подготовки, переподготовки и повышения квалификации оперативного и обслуживающего персонала Иркутской ГЭС, позволяет формировать и поддерживать на высоком уровне навыки оперативного персонала в производстве переключений в электроустановках и управлении гидротурбинным и гидромеханическим оборудованием станции в нормальном и аварийном режимах работы.

    Организация эффективной тренажерной подготовки оперативного и обслуживающего персонала на тренажере по оперативным переключениям Иркутской ГЭС достигается за счет реализации в тренажере следующих основных моделируемых подсистем: модели рабочего места обучаемого, модели рабочего места инструктора, модели объекта управления, модели системы управления, модели системы обучения.

    В состав объекта-прототипа тренажера входят:
    — Восемь гидрогенераторов номинальной мощностью 82,8 МВт.
    — Открытое распредустройство 220 кВ.
    — Открытое распредустройство 110 кВ.
    — Распределительное устройство собственных нужд 6,3 кВ.
    — Распределительное устройство собственных нужд 0,4 кВ.
    — Трансформаторы и автотрансформаторы.
    — Система электроснабжения собственных нужд ГЭС.

    Краткое описание объекта-прототипа.

    В состав системы выработки электроэнергии ГЭС и выдачи ее в энергосистему входят восемь гидрогенераторов, установленных на восьми ГА,  номинальной мощностью 82,8 МВт каждый, два повышающих трансформатора 13,8/110 кВ, два автотрансформатора 13,8/110/220 кВ, закрытое распределительное устройство 13,8 кВ, распределительные устройства напряжением 110 кВ и 220 кВ,  распределительные устройства собственных нужд станции 6,3 кВ и 0,4 кВ.

    Рабочие трансформаторы 1Т и 4Т на напряжение 13,8/110 кВ мощностью 80 МВА от генераторов 1Г, 2Г, 7Г, 8Г питают 1 и 2 СШ 110 кВ, а также 1 и 4 секции 6,3 кВ СН через трансформаторы собственных нужд 5Т и 8Т.

    Автотрансформаторы 2АТ и 3АТ напряжением 13,8/110/220 кВ мощностью 138 МВА от генераторов 3Г, 4Г, 5Г, 6Г  питают шины 110 и 220 кВ, а также 2 и 3 секции КРУ-6,3 кВ СН через трансформаторы собственных нужд 6Т и 7Т. 

    Открытое распредустройство 220 кВ выполнено по схеме с двумя системами шин с присоединением двух ВЛ. Для исключения «мертвых зон» предусмотрена установка трансформаторов тока с обеих сторон выключателей.

    Открытое распредустройство 110 кВ выполнено по схеме двух систем шин с обходной системой шин с присоединением восьми ВЛ. Присоединения с помощью разъединителей могут подключаться к любой системе шин. Трансформаторы тока расположены по обе стороны от выключателей присоединений 110 кВ (для исключения «мертвых зон» в ОРУ 110 кВ).

    Закрытое распредустройство 13,8 кВ ЗРУ–13,8 кВ состоит из 8 секций, запитанных от генераторов 1Г-8Г и четырех трансформаторов 1Т, 4Т и 2АТ, 3АТ.

    Система электроснабжения собственных нужд ГЭС содержит источники рабочего, резервного и аварийного питания и распределительные устройства напряжением 6,3 кВ. Состоит из четырех секций, запитанных от трансформаторов 5Т, 6Т, 7Т, 8Т.

    Распределительное устройство собственных нужд 0,4 кВ состоит из тринадцати секций, запитанных от трансформаторов 9Т, 10Т, 11Т, 12Т, 13Т, 14Т, 15Т, 16Т,  19Т, 20Т. От секций питаются механизмы и оборудование собственных нужд.

      Состав тренажера.

      Модель объекта и режимы работы.

    В состав тренажера входят математические модели:
    — гидравлической части гидроагрегата;
    — тепломеханической части гидроагрегата;
    — электрическая схема блока генератор-трансформатор;
    — главная электрическая схема станции;
    — электрическая схема питания собственных нужд станции;
    — трансформаторы и автотрансформаторы;
    — система аварийной и предупредительной сигнализации;
    — РЗиА.

    Математические модели гидравлической и тепломеханической частей гидроагрегатов, работы вспомогательного оборудования ГЭС состоят из дифференциальных уравнений, основанных на рассмотрении физической природы процессов, то есть стандартных балансовых уравнений, а количественные зависимости и направленность процессов определяются законами термодинамики, гидродинамики и т.д. Зависимости между параметрами связей однозначно и единообразно описываются уравнениями энергетического, расходного и гидравлического балансов в элементах оборудования.

    В состав тренажёра также входят математические модели генератора, системы возбуждения, электрической цепи, средств РЗА, трансформаторов, коммутационных аппаратов, электродвигателей и упрощённая модель энергосистемы при работе на длинную линию;

    Модели гидрогенераторов реализованы на основе системы дифференциальных уравнений Парка-Горева и описывают работу генераторов в синхронном, асинхронном и двигательном режимах с непрерывным переходом из одного режима в другой.

    Модель электрической цепи основана на системе дифференциальных уравнений, выражающих законы Кирхгофа, и описывает динамику напряжения, токов и частоты во всех режимах, включая аварийные.

    В общем, математическая модель данного объекта, а именно модель гидроэлектростанции с полным комплексом гидравлического, энергетического и электротехнического оборудования воспроизводит все режимы работы оборудования при любых переключениях в схеме электростанции, при выработке и регулировании мощности в энергосистеме, в пусковых и остановочных режимах гидроагрегатов, а также аварийные режимы, которые задаются с помощью вводных с пульта инструктора. Это короткие замыкания на линиях, шинах, в трансформаторах, генераторе, на присоединениях, отказы в работе гидравлического оборудования. 

    Модель системы управления.

    В Тренажере по оперативным переключениям»  Иркутской ГЭС за основу для моделирования взята система управления оборудованием, существующая на Иркутской ГЭС. Схемы гидроагрегатов, распредустройств 220, 110, 13,8 кВ, собственных нужд визуально полностью идентичны станционным.
    Модель системы управления тренажера позволяет управлять объектами гидромеханической и главной электрической схемы станции, контролировать текущее состояние параметров и оборудования, срабатывание защит и сигнализации в таком же представлении, как и на реальной АСУТП Иркутской ГЭС, привычной для персонала, в объеме, необходимом для проведения обучающих тренировок.
    Согласно Техническому проекту, в интерфейсе тренажера реализованы следующие системы управления Иркутской ГЭС: АСУГ1-8, АСУ СН, ГРАРМ, ГЩУ, управление с местных и релейных щитов ГА, трансформаторов, РЗиА и другого оборудования гидростанции.

    Имитация достаточно адекватных условий работы оперативного персонала, а также персонала ТОиР достигается в тренажере не только путем использования рабочего места персонала, но и всей его зоны обслуживания, интерфейс которых максимально точно соответствует реальному интерфейсу.

    Модель системы защит.

    Модель системы защит включает следующие модели:
    — защиты гидроагрегатов;
    — защиты гидрогенераторов;
    — защиты трансформаторов;
    — защиты линий;
    — защиты шин.

    Управление электрическими защитами ГЭС тренажера происходит из шкафов резервных и основных защит, УРОВ, расположенных на мнемосхемах АСУГ1-8 и схемах распредустройств 110, 220 кВ, выполнено по фотографиям шкафов РЗ и максимально приближено к реальному. Шкафы защит имеют идентификационные номера такие же, как их маркировка на электростанции и легко узнаваемы на схемах тренажера, изображаются в виде кнопок и областей перехода. В момент срабатывания защиты подают сигнал желтого цвета совместно со звуковой сигнализацией. Сигналы и ключи в шкафах защит отрабатывают аналогично реальным. Отображение информации по защитам и другим системам тренажера повторяет интерфейс АСУ объекта и дает возможность проводить обучение персонала в условиях, приближенным к рабочим.

    Модель блокировок.

    Реализована модель блокировок, имеющихся на гидроэлектростанции. Сюда входят блокировки основного и вспомогательного оборудования ГА, разъединителей и выключателей, заземляющих ножей главной электрической схемы и СН. Информация о действующей блокировке коммутационного аппарата находится в управляющем окне данного аппарата и содержит условия ее действия.

    Модель аварийной и предупредительной сигнализации.

    Кроме сигнализации в системе АСУГ, срабатывание аварийной и предупредительной сигнализаций отображается в отдельном специальном окне в виде табло. Каждая строка этого табло – одно сигнализационное сообщение с соответствующими характеристиками: наименованием, временем срабатывания, указанием объекта срабатывания и устройства срабатывания. Кроме того, сработавшая сигнализация фиксируется в протоколе аварийных сообщений и записывается в отдельный файл.

    Модели сценариев тренировок.

    Набор сценариев тренировок представляет собой дополнительный сервис, позволяющий обучать персонал по бланкам переключений, а также по основным операциям в управлении оборудованием ГЭС (вывод в ремонт, ввод в работу и т.д.)

    Модель сценария – это программное пошаговое описание набора необходимых действий оператора в определенной последовательности для выполнения тренировочного задания по сценарию. В процессе прохождения задания модель отслеживает и фиксирует выполняемые оператором действия по пунктам из бланка переключений или задания. В случае правильного выполнения всех описанных в бланке шагов в заданной последовательности и достижения требуемого состояния оборудования, модель сценария заканчивает свою работу и выдает сообщение об успешном прохождении тренировочного задания.

    На данный момент в тренажере имеется 30 автоматизированных сценариев, охватывающих весь спектр электротехнического оборудования Иркуутской ГЭС и представленных в виде бланков. 

    Модель вводных.

    Модель вводных – это математическое описание различного рода внешних возмущений, производимых с пульта инструктора. К ним относятся отказы в работе как электротехнического оборудования – выключателей, повреждения на линиях, шинах, в трансформаторах, генераторах, так и в работе гидромеханических систем – засорение фильтров, снижение давления масла в системе МНУ, отказы в действии защит и др. Для работы с  вводными предусмотрены специальные управляющие окна, в которых инструктор по своему усмотрению задает различные нештатные ситуации, позволяющие подготавливать персонал электростанции к парирующим действиям.

    Эта функция тренажера позволяет формировать противоаварийные сценарии тренировок, с последующим анализом действий обучаемого.

    Контролирующая программа.

    Работает в течение всего процесса тренировки и фиксирует ошибки, произведенные оператором за время работы на тренажере. Происходит начисление штрафных баллов при отклонении значений текущих параметров от допустимых с учетом правильного (или неправильного) выполнения определенных операций. Количество начисленных баллов зависит от характера и весомости нарушения.

    Все возможные нарушения в работе режима, а также действия оператора, не соответствующие номинальным при работе с гидро и электрооборудованием, заносятся в протокол контроля (ошибок). В данном списке указаны критерии нарушений, количество штрафных баллов по каждому критерию и время задержки наложения штрафа. То есть, для некоторых нарушений предоставляется определенное количество времени на их устранение.

    Регистрация произведенных оператором ошибок в результате работы контролирующей программы происходит в протоколе контроля с указанием момента времени совершения нарушения и количеством начисленных за него штрафных баллов.

    Протоколы.

    Программа тренажера формирует следующие протоколы:
    — контроля;
    — действий оператора;
    — аварийных сообщений;
    — действий автоматики;
    — действия защит;
    — первопричины защит.

    Каждое событие, совершенное при работе оператора на тренажере, фиксируется по времени и заносится в соответствующий протокол.

    Это позволяет инструктору следить за процессом обучения, анализировать причины ошибок оператора и давать соответствующие наставления и рекомендации.

     Инструкции.

    В тренажере имеется архив технической документации, используемой на электростанции, по работе систем главной схемы и гидроагрегатов. Это эксплуатационные инструкции, оперативные схемы и другая техническая документация, обращение к которым производится нажатием одной клавиши. При необходимости получения справочной информации оператор в любой момент может обратиться к этому архиву. Исключение составляет экзаменационный режим, в котором отключаются все подсказки.